
APPENDIX A

Lateral–torsional buckling of
composite beams for buildings

This appendix supplements the comments on clause 6.4.

Simplified expression for ‘cracked’ flexural stiffness of a
composite slab
The ‘cracked’ stiffness per unit width of a composite slab is defined in clause 6.4.2(6)
as the lower of the values at mid-span and at a support. The latter usually governs, because
the profiled sheeting may be discontinuous at a support. It is now determined for the
cross-section shown in Fig. A.1 with the sheeting neglected.

It is assumed that only the concrete within the troughs is in compression. Its transformed
area in ‘steel’ units is

Ae = b0 hp /nbs (a)

where n is the modular ratio. The position of the elastic neutral axis is defined by the
dimensions a and c, so that

Aec = Asa and a + c = z (b)

where As is the area of top reinforcement per unit width of slab, and

z = h – ds – hp /2 (c)
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Fig. A.1. Model for stiffness of a composite slab in hogging bending
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(C.20)

and

(C.21)

For the different positions of the neutral axes, hn and Wpa, n are given by:

(a) Neutral axis in the web, hn £ tw/2:

(C.22)

Wpa, n = hhn
2 (C.23)

(b) Neutral axis in the flanges, tw/2 < hn < b/2:

(C.24)

(C.25)

(c) Neutral axis outside the steel section, b/2 £ hn £ bc/2

(C.26)

Wpa, n = Wpa (C.27)

The plastic modulus of the concrete in the region of depth 2hn then results from

Wpc, n = hc hn
2 – Wpa, n – Wps, n (C.28)

with Wps, n according to equation (C.19), changing the subscript z to y.

Concrete-filled circular and rectangular hollow sections
The following equations are derived for rectangular hollow sections with bending about the
y-axis of the section (see Fig. C.3). For bending about the z-axis the dimensions h and b are to
be exchanged as well as the subscripts z and y. Equations (C.29) to (C.33) may be used for
circular hollow sections with good approximation by substituting

h = b = d and r = d/2 – t

(C.29)

with Wps according to equation (C.9).
Wpa may be taken from tables, or be calculated from

(C.30)

(C.31)

Wpc, n = (b – 2t)hn
2 – Wps, n (C.32)

Wpa, n = bhn
2 – Wpc, n – Wps, n (C.33)

with Wps, n according to equation (C.19).
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Example C.1: N–M interaction polygon for a column cross-section
The method of Appendix C is used to obtain the interaction polygon given in Fig. 6.38 for
the concrete-encased H section shown in Fig. 6.37. The small area of longitudinal
reinforcement is neglected. The data and symbols are as in Example 6.10 and Figs 6.37,
C.1 and C.2.

Design strengths of the materials: fyd = 355 N/mm2; fcd = 16.7 N/mm2.
Other data: Aa = 11 400 mm2; Ac = 148 600 mm2; tf = 17.3 mm; tw = 10.5 mm; bc = hc =

400 mm; b = 256 mm; h = 260 mm; 10–6Wpa, y = 1.228 mm3; 10–6Wpa, z = 0.575 mm3; Npl, Rd =
6156 kN.

Major-axis bending
From equation (C.8),

Npm, Rd = 148.6 × 16.7 = 2482 kN

From equation (C.12),

hn = 2482/[0.8 × 16.7 + 0.021 × (710 – 16.7)] = 89 mm

so the neutral axis is in the web (Fig. C.4(a)), as assumed. From equation (C.11), the
plastic section modulus for the whole area of concrete is

10–6Wpc = 43/4 – 1.228 = 14.77 mm3

From equation (C.13),

10–6Wpa, n = 10.5 × 0.0892 = 0.083 mm3

From equation (C.18),

10–6Wpc, n = 400 × 0.0892 – 0.083 = 3.085 mm3

From equation (C.5),

Mmax, Rd = 1.228 × 355 + 14.77 × 16.7/2 = 559 kN m

From equations (C.6) and (C.7),

Mpl, Rd = 559 – (0.083 × 355 + 3.085 × 16.7/2) = 504 kN m

The results shown above in bold type are plotted on Fig. 6.38.
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Fig. C.3. Concrete-filled (a) rectangular and (b) circular hollow sections, with notation



(12.17)

The inverse Fourier transform into the space solution is

(12.18)

in which a new parameter to define the ground stiffness,

(12.19)

has been introduced for the inverse of the Green’s function s(ξx, y = 0, z = 0, ω) for
the soil.

Once the interaction force Ps(ξx, y = 0, z = 0, ω) is determined, then the ground
motion at locations other than the interface at y = 0, z = 0 is obtained from

(12.20)

where

(12.21)

(12.22)

where the ground Green’s function is defined for the x-, y- and z-
directional response components. The wave field is calculated for the in-plane and
out-of-plane motions and the respective contributions are converted to Cartesian
coordinates using equation (12.67). Therefore, the final results are functions of the
wavenumbers ξx and ξy.

If the soil impedance is assumed to be constant, i.e. K(ξx, ω) = K, then

(12.23)

where

(12.24)

(12.25)

For the frequency range ω/Ω = 1, the soil reaction is approximated by

(12.26)
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in which y0 gives the coordinate of the triangle apex, and B is its base width.
The Fourier transform of equation (12.29) can be expressed for a specific frequency

ωj, using equation (12.30), as

(12.36)

where

(12.37)

where Ak(ωj) is the load intensity in the k direction at frequency ωj. The Fourier
transform of equation (12.35) is obtained as

(12.38)

The characteristic value is taken as q = 1.5 m in the later analysis in view of the
conventional track structure. The coefficients Ak(ωj) should be determined on the
basis of matching the simulation results to measurement data (see, e.g., [12.20]). The
response in the transformed domain can be solved for, as

(12.39)

where Gz(ξx, ξy, z, ω) denotes the transformed-domain solution for the stationary
load corresponding to equation (12.36). The computation of Gz(ξx, ξy, z, ω) is
formulated in the next section. The response in the space and time domain is
therefore obtained from the inverse transform of

(12.40)

The discretized solution then follows according to equation (12.6). Hence,

(12.41)

where

where ∆ξy = 2π/L, L is a specific length.
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12.2.5. Elastodynamic analysis
12.2.5.1. Three-dimensional wave motions [12.17, 12.19]
An inhomogeneous layered medium for which the properties are constant within
individual layers of depths h is defined by the density ρ and the complex Lamé
constants λc = λ(1 + 2ζi) and µc = µ(1 + 2ζi), where ζ is the internal damping ratio
of the focused layer. The governing equation of an elastic body under the force
action f is described by

(12.42)

where the subscripts i and j denote the space coordinates and the comma convention
is used for space derivatives.

The resolution of the three-dimensional wave equation into the SV–P and the SH
wave fields is performed via the relationship

(12.43)

where the subscripts 1 and 2 correspond to the coordinates in the transformed
domain. Similar expressions hold for the force vectors as well:

(12.44)

Hence, the decoupled in-plane motions comprising the SV and P waves are governed
by

(12.45)

(12.46)

The out-of-plane motion comprising the SH wave is governed by

(12.47)

We define VP = ÷[(λc + 2µc)/ρ] and VS = ÷(µc/ρ) to denote the P-wave and the S-
wave velocity, respectively. The notations

(12.48)

with ξ2 = ξx
2 + ξy

2 have been introduced for defining the wavenumbers for the P-
wave and the S-wave field, respectively.

The displacements obtained from the solution of equations (12.45) and (12.46)
can be expressed as
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