Lateral-torsional buckling of composite beams for buildings

This appendix supplements the comments on clause 6.4.

Simplified expression for 'cracked' flexural stiffness of a composite slab

The 'cracked' stiffness per unit width of a composite slab is defined in clause 6.4.2(6) as the lower of the values at mid-span and at a support. The latter usually governs, because the profiled sheeting may be discontinuous at a support. It is now determined for the cross-section shown in Fig. A. 1 with the sheeting neglected.

It is assumed that only the concrete within the troughs is in compression. Its transformed area in 'steel' units is

$$
\begin{equation*}
A_{e}=b_{0} h_{p} / n b_{s} \tag{a}
\end{equation*}
$$

where n is the modular ratio. The position of the elastic neutral axis is defined by the dimensions a and c, so that

$$
\begin{equation*}
A_{e} \mathrm{C}=\mathrm{A}_{\mathrm{s}} \mathrm{a} \quad \text { and } \quad a+\mathrm{c}=\mathrm{z} \tag{b}
\end{equation*}
$$

where A_{s} is the area of top reinforcement per unit width of slab, and

$$
\begin{equation*}
z=h-d_{s}-h_{p} / 2 \tag{c}
\end{equation*}
$$

Fig. A.1. Model for stiffness of a composite slab in hogging bending

$$
\begin{equation*}
W_{p a}=\frac{\left(h-2 t_{f}\right) t_{w}{ }^{2}}{4}+\frac{2 t_{f} b^{2}}{4} \tag{C.20}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{p c}=\frac{h_{c} b_{c}^{2}}{4}-W_{p a}-W_{p s} \tag{C.21}
\end{equation*}
$$

F or the different positions of the neutral axes, h_{n} and $\mathrm{W}_{\mathrm{pa}, \mathrm{n}}$ are given by:
(a) Neutral axis in the web, $\mathrm{h}_{\mathrm{n}} \leq \mathrm{t}_{\mathrm{w}} / 2$:

$$
\begin{align*}
& \mathrm{h}_{\mathrm{n}}=\frac{\mathrm{N}_{\mathrm{pm}, \mathrm{Rd}}-\mathrm{A}_{\mathrm{sn}}\left(2 \mathrm{f}_{\mathrm{sd}}-\mathrm{f}_{\mathrm{cc}}\right)}{2 \mathrm{~h}_{\mathrm{c}} \mathrm{f}_{\mathrm{cc}}+2 \mathrm{~h}\left(2 \mathrm{f}_{\mathrm{yd}}-\mathrm{f}_{\mathrm{cc}}\right)} \tag{C.22}\\
& \mathrm{W}_{\mathrm{pa}, \mathrm{n}}=\mathrm{hh}_{\mathrm{n}}^{2} \tag{C.23}
\end{align*}
$$

(b) Neutral axis in the flanges, $\mathrm{t}_{\mathrm{w}} / 2<\mathrm{h}_{\mathrm{n}}<\mathrm{b} / 2$:

$$
\begin{align*}
& h_{n}=\frac{N_{p m, R d}-A_{s n}\left(2 f_{s d}-f_{c c}\right)+t_{w}\left(2 t_{f}-h\right)\left(2 f_{y d}-f_{c c}\right)}{2 h_{c} f_{c c}+4 t_{f}\left(2 f_{y d}-f_{c c}\right)} \tag{C.24}\\
& W_{p a, n}=2 t_{f} h_{n}^{2}+\frac{\left(h-2 t_{\mathrm{c}}\right) t_{w}^{2}}{4} \tag{C.25}
\end{align*}
$$

(c) Neutral axis outside the steel section, $b / 2 \leq h_{n} \leq b_{c} / 2$

$$
\begin{align*}
& \mathrm{h}_{\mathrm{n}}=\frac{\mathrm{N}_{\mathrm{pm}, \mathrm{Rd}}-\mathrm{A}_{\mathrm{sn}}\left(2 \mathrm{f}_{\mathrm{sd}}-\mathrm{f}_{\mathrm{cc}}\right)-\mathrm{A}_{\mathrm{a}}\left(2 \mathrm{f}_{\mathrm{yd}}-\mathrm{f}_{\mathrm{cc}}\right)}{2 \mathrm{~h}_{\mathrm{c}} \mathrm{f}_{\mathrm{cc}}} \tag{C.26}\\
& \mathrm{~W}_{\mathrm{pa}, \mathrm{n}}=\mathrm{W}_{\mathrm{pa}} \tag{C.27}
\end{align*}
$$

The plastic modulus of the concrete in the region of depth $2 h_{n}$ then results from

$$
\begin{equation*}
W_{p c, n}=h_{c} h_{n}^{2}-W_{p a, n}-W_{p s, n} \tag{C.28}
\end{equation*}
$$

with $W_{p s, n}$ according to equation (C.19), changing the subscript z to y.

Concrete-filled circular and rectangular hollow sections

The following equations are derived for rectangular hollow sections with bending about the y-axis of the section (see Fig. C.3). F or bending about the z-axis the dimensions h and b are to be exchanged as well as the subscripts z and y. E quations (C.29) to (C.33) may be used for circular hollow sections with good approximation by substituting

$$
\begin{align*}
& h=b=d \quad \text { and } \quad r=d / 2-t \\
& W_{p c}=\frac{(b-2 t)(h-2 t)^{2}}{4}-\frac{2}{3} r^{3}-r^{2}(4-\pi)(0.5 h-t-r)-W_{p s} \tag{C.29}
\end{align*}
$$

with $W_{p s}$ according to equation (C.9).
W_{pa} may be taken from tables, or be calculated from

$$
\begin{align*}
& W_{p a}=\frac{b h^{2}}{4}-\frac{2}{3}(r+t)^{3}-(r+t)^{2}(4-\pi)(0.5 h-t-r)-W_{p c}-W_{p s} \tag{С.30}\\
& h_{n}=\frac{N_{p m, R d}-A_{s n}\left(2 f_{s d}-f_{c c}\right)}{2 b f_{c c}+4 t\left(2 f_{y d}-f_{c c}\right)} \tag{C.31}\\
& W_{p c, n}=(b-2 t) h_{n}^{2}-W_{p s, n} \tag{C.32}\\
& W_{p a, n}=b h_{n}^{2}-W_{p c, n}-W_{p s, n} \tag{C.33}
\end{align*}
$$

with $W_{p s, n}$ according to equation (C.19).

Fig. C.3. Concrete-filled (a) rectangular and (b) circular hollow sections, with notation

Example C.1: $\mathbf{N}-\mathbf{M}$ interaction polygon for a column cross-section

The method of A ppendixC is used to obtain the interaction polygon given in Fig. 6.38 for the concrete-encased H section shown in Fig. 6.37. The small area of longitudinal reinforcement is neglected. The data and symbols are as in Example 6.10 and Figs 6.37, C. 1 and C. 2 .

D esign strengths of the materials: $f_{y d}=355 \mathrm{~N} / \mathrm{mm}^{2} ; f_{c d}=16.7 \mathrm{~N} / \mathrm{mm}^{2}$.
Other data: $A_{a}=11400 \mathrm{~mm}^{2} ; A_{c}=148600 \mathrm{~mm}^{2} ; \mathrm{t}_{\mathrm{f}}=17.3 \mathrm{~mm} ; \mathrm{t}_{\mathrm{w}}=10.5 \mathrm{~mm} ; \mathrm{b}_{\mathrm{c}}=\mathrm{h}_{\mathrm{c}}=$ $400 \mathrm{~mm} ; \mathrm{b}=256 \mathrm{~mm} ; \mathrm{h}=260 \mathrm{~mm} ; 10^{-6} \mathrm{~W}_{\mathrm{pa}, \mathrm{y}}=1.228 \mathrm{~mm}^{3} ; 10^{-6} \mathrm{~W}_{\mathrm{pa}, \mathrm{z}}=0.575 \mathrm{~mm}^{3} ; \mathbf{N}_{\mathrm{pl}, \mathrm{Rd}}=$ 6156 kN.

M ajor-axis bending
From equation (C.8),

$$
\mathbf{N}_{\mathrm{pm}, \mathrm{Rd}}=148.6 \times 16.7=2482 \mathrm{kN}
$$

From equation (C.12),

$$
h_{n}=2482 /[0.8 \times 16.7+0.021 \times(710-16.7)]=89 \mathrm{~mm}
$$

so the neutral axis is in the web (Fig. C.4(a)), as assumed. From equation (C.11), the plastic section modulus for the whole area of concrete is

$$
10^{-6} \mathrm{~W}_{\mathrm{pc}}=4^{3} / 4-1.228=14.77 \mathrm{~mm}^{3}
$$

From equation (C.13),

$$
10^{-6} \mathrm{~W}_{\mathrm{pa}, \mathrm{n}}=10.5 \times 0.089^{2}=0.083 \mathrm{~mm}^{3}
$$

From equation (C.18),

$$
10^{-6} \mathrm{~W}_{\mathrm{pc}, \mathrm{n}}=400 \times 0.089^{2}-0.083=3.085 \mathrm{~mm}^{3}
$$

From equation (C.5),

$$
M_{\max , R d}=1.228 \times 355+14.77 \times 16.7 / 2=559 \mathrm{kN} \mathrm{~m}
$$

From equations (C.6) and (C.7),

$$
\mathbf{M}_{\mathrm{pl}, \mathrm{Rd}}=559-(0.083 \times 355+3.085 \times 16.7 / 2)=504 \mathbf{k N ~ m}
$$

The results shown above in bold type are plotted on Fig. 6.38.

$$
\begin{equation*}
\tilde{\bar{P}}_{\mathrm{s}}\left(\xi_{x}, z=0, \omega\right)=\frac{2 \pi P_{0}}{c} \frac{\delta\left[\xi_{z}-\left(\omega-\omega_{0}\right) / c\right]}{\left(L_{\mathrm{c}} \xi_{z}\right)^{4}-(\omega / \Omega)^{2}+1} \tag{12.17}
\end{equation*}
$$

The inverse Fourier transform into the space solution is

$$
\begin{equation*}
u_{\mathrm{b}}(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{P_{0}}{c} \frac{\exp \left[-\mathrm{i}\left(\omega-\omega_{0}\right) x / c\right] \exp (\mathrm{i} \omega t)}{E I\left[\left(\omega-\omega_{0}\right) / c\right]^{4}-\omega^{2} m+\tilde{\tilde{K}}\left[\left(\omega-\omega_{0}\right) / c, \omega\right]} \mathrm{d} \omega \tag{12.18}
\end{equation*}
$$

in which a new parameter to define the ground stiffness,

$$
\begin{equation*}
\tilde{\bar{K}}\left(\xi_{x}, \omega\right)=\frac{2 B}{\tilde{\bar{G}}_{s}\left(\xi_{x}, y=0, z=0, \omega\right)} \tag{12.19}
\end{equation*}
$$

has been introduced for the inverse of the Green's function $\tilde{\bar{G}}_{\mathrm{s}}\left(\xi_{x}, y=0, z=0, \omega\right)$ for the soil.

Once the interaction force $P_{\mathrm{s}}\left(\xi_{x}, y=0, z=0, \omega\right)$ is determined, then the ground motion at locations other than the interface at $y=0, z=0$ is obtained from

$$
\begin{equation*}
\tilde{\overline{\boldsymbol{u}}}_{\mathrm{s}}\left(\xi_{x}, \xi_{y}, z, \omega\right)=\tilde{\overline{\boldsymbol{G}}}_{z}\left(\xi_{x}, \xi_{y}, z, \omega\right) \tilde{\bar{P}}_{\mathrm{s}}\left(\xi_{x}, z=0, \omega\right) \tilde{\Psi}\left(\xi_{y}\right) \tag{12.20}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\bar{P}}_{s}\left(\xi_{x}, y=0, z=0, \omega\right)=\frac{2 \pi P_{0}}{c} \tilde{\bar{\Phi}}\left(\xi_{x}, \omega\right) \delta\left(\xi_{x}-\frac{\omega-\omega_{0}}{c}\right) \tag{12.21}\\
& \tilde{\bar{\Phi}}\left(\xi_{x}, \omega\right)=\frac{\tilde{\bar{K}}\left(\xi_{x}, \omega\right)}{E I \xi_{x}^{4}-m \omega^{2}+\tilde{\bar{K}}\left(\xi_{x}, \omega\right)} \tag{12.22}
\end{align*}
$$

where the ground Green's function $\tilde{\overline{\boldsymbol{G}}}_{z}\left(\xi_{x}, \xi_{y}, z, \omega\right)$ is defined for the x-, y - and z directional response components. The wave field is calculated for the in-plane and out-of-plane motions and the respective contributions are converted to Cartesian coordinates using equation (12.67). Therefore, the final results are functions of the wavenumbers ξ_{x} and ξ_{y}.

If the soil impedance is assumed to be constant, i.e. $K\left(\xi_{x}, \omega\right)=K$, then

$$
\begin{equation*}
\tilde{\bar{P}}_{\mathrm{s}}\left(\xi_{x}, z=0, \omega\right)=\frac{2 \pi P_{0}}{c} \frac{\delta\left[\xi_{x}-\left(\omega-\omega_{0}\right) / c\right]}{\left(L_{\mathrm{c}} \xi_{x}\right)^{4}-(\omega / \Omega)^{2}+1} \tag{12.23}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{\mathrm{c}}=\sqrt[4]{\frac{4 E I}{K}} \tag{12.24}\\
& \Omega=\sqrt{\frac{K}{m}} \tag{12.25}
\end{align*}
$$

For the frequency range $\omega / \Omega \ll 1$, the soil reaction is approximated by

$$
\begin{equation*}
\tilde{\bar{P}}_{\mathrm{s}}\left(\xi_{x}, y=0, z=0, \omega\right)=\frac{2 \pi P_{0}}{c} \tilde{\Phi}\left(\xi_{x}\right) \delta\left(\xi_{x}-\frac{\omega-\omega_{0}}{c}\right) \tag{12.26}
\end{equation*}
$$

in which y_{0} gives the coordinate of the triangle apex, and B is its base width.
The Fourier transform of equation (12.29) can be expressed for a specific frequency ω_{j}, using equation (12.30), as

$$
\begin{equation*}
\tilde{\bar{F}}_{N}\left(\xi_{x}, \xi_{y}, z, \omega\right)=\frac{2 \pi}{c} \tilde{\Phi}\left(\xi_{x}\right) \tilde{\Psi}\left(\xi_{y}\right) \chi\left(\xi_{x}\right) \sum_{j} A_{k}\left(\omega_{j}\right) \delta\left(\xi_{x}-\frac{\omega-\left|\omega_{j}\right|}{c}\right) \delta(z) \tag{12.36}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{N}(\xi)=\left(1+\mathrm{e}^{\mathrm{i} a \xi_{x}}+\mathrm{e}^{\mathrm{i}(a+b) \xi_{x}}+\mathrm{e}^{\mathrm{i}(2 a+b) \xi_{x}}\right) \frac{1-\mathrm{e}^{\mathrm{i} N L_{L} \xi_{x}}}{1-\mathrm{e}^{\mathrm{L} \xi_{x}} \xi_{x}} \tag{12.37}
\end{equation*}
$$

where $A_{k}\left(\omega_{j}\right)$ is the load intensity in the k direction at frequency ω_{j}. The Fourier transform of equation (12.35) is obtained as

$$
\begin{equation*}
\tilde{\Psi}\left(\xi_{y}\right)=\frac{4\left[1-\cos \left(B \xi_{y}\right)\right]}{\left(B \xi_{y}\right)^{2}} \cos \left(\xi_{y} y_{0}\right) \tag{12.38}
\end{equation*}
$$

The characteristic value is taken as $q=1.5 \mathrm{~m}$ in the later analysis in view of the conventional track structure. The coefficients $A_{k}\left(\omega_{j}\right)$ should be determined on the basis of matching the simulation results to measurement data (see, e.g., [12.20]). The response in the transformed domain can be solved for, as

$$
\begin{equation*}
\tilde{\overline{\boldsymbol{u}}}\left(\xi_{x}, \xi_{y}, z, \omega\right)=\boldsymbol{G}_{z}\left(\xi_{x}, \xi_{y}, z, \omega\right) \sum_{j} A\left(\omega_{j}\right) \delta\left(\xi_{x}-\frac{\omega-\omega_{j}}{c}\right) \tag{12.39}
\end{equation*}
$$

where $\boldsymbol{G}_{z}\left(\xi_{x}, \xi_{y}, z, \omega\right)$ denotes the transformed-domain solution for the stationary load corresponding to equation (12.36). The computation of $\boldsymbol{G}_{z}\left(\xi_{x}, \xi_{y}, z, \omega\right)$ is formulated in the next section. The response in the space and time domain is therefore obtained from the inverse transform of

$$
\begin{align*}
\boldsymbol{u}_{\mathrm{s}}(x, y, z, t)= & \frac{1}{8 \pi^{3}} \sum_{j} A\left(\omega_{j}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{\overline{\boldsymbol{u}}}\left(\frac{\omega-\omega_{j}}{c}, \xi_{y k}, z, \omega\right) \exp \left(\mathrm{i} \frac{\omega_{j} x}{c}\right) \times \\
& \exp \left(-\mathrm{i} \xi_{y} y\right) \exp \left[\mathrm{i} \omega\left(t-\frac{x}{c}\right)\right] \mathrm{d} \xi_{y} \mathrm{~d} \omega \tag{12.40}
\end{align*}
$$

The discretized solution then follows according to equation (12.6). Hence,

$$
\begin{align*}
\boldsymbol{u}_{\mathrm{s}}(x, y, z, \omega)= & \frac{1}{4 \pi^{2}} \sum_{k=0}^{K} \sum_{j} \tilde{\overline{\boldsymbol{u}}}_{\mathrm{s}}\left(\frac{\omega-\omega_{j}}{c}, \xi_{y k}, z, \omega\right) A\left(\omega_{j}\right) \times \tag{12.41}\\
& \boldsymbol{G}_{z}\left(\frac{\omega-\omega_{j}}{c}, \xi_{y k}, z, \omega\right) \exp \left(-\mathrm{i} \frac{\omega-\omega_{j}}{c} x\right) \Delta \xi_{y}
\end{align*}
$$

where

$$
\xi_{y k}=\frac{2 \pi k}{L} \quad(k=0,1,2,3, \ldots, K)
$$

where $\Delta \xi_{y}=2 \pi / L, L$ is a specific length.

12.2.5. Elastodynamic analysis

I 2.2.5. I. Three-dimensional wave motions [12.17, 12.19]

An inhomogeneous layered medium for which the properties are constant within individual layers of depths h is defined by the density ρ and the complex Lamé constants $\lambda^{\mathrm{c}}=\lambda(1+2 \zeta \mathrm{i})$ and $\mu^{\mathrm{c}}=\mu(1+2 \zeta \mathrm{i})$, where ζ is the internal damping ratio of the focused layer. The governing equation of an elastic body under the force action f is described by

$$
\begin{equation*}
\mu^{\mathrm{c}} \tilde{\bar{u}}_{i, j j}+\left(\lambda^{\mathrm{c}}+\mu^{\mathrm{c}}\right) \tilde{\bar{u}}_{j, j i}+\omega^{2} \rho \tilde{\bar{u}}_{i}+\tilde{\bar{f}}_{i}=0 \tag{12.42}
\end{equation*}
$$

where the subscripts i and j denote the space coordinates and the comma convention is used for space derivatives.

The resolution of the three-dimensional wave equation into the SV-P and the SH wave fields is performed via the relationship

$$
\left\{\begin{array}{c}
\tilde{\bar{u}}_{x} \tag{12.43}\\
\tilde{\bar{u}}_{y} \\
\tilde{\bar{u}}_{z}
\end{array}\right\}=\left[\begin{array}{ccc}
\mathrm{i} \xi_{x} / \xi & 0 & -\mathrm{i} \xi_{y} / \xi \\
\mathrm{i} \xi_{y} / \xi & 0 & \mathrm{i} \xi_{x} / \xi \\
0 & 1 & 0
\end{array}\right]\left\{\begin{array}{c}
\tilde{\bar{u}}_{1} \\
\tilde{\bar{u}}_{2} \\
\tilde{\bar{u}}_{3}
\end{array}\right\} \quad \text { or } \quad \tilde{\overline{\boldsymbol{u}}}_{x, y, z}=\mathbf{C} \tilde{\overline{\boldsymbol{u}}}_{1,2,3}
$$

where the subscripts 1 and 2 correspond to the coordinates in the transformed domain. Similar expressions hold for the force vectors as well:

$$
\begin{equation*}
\tilde{\bar{f}}_{x, y, z}=\mathbf{C} \tilde{\bar{f}}_{1,2,3} \tag{12.44}
\end{equation*}
$$

Hence, the decoupled in-plane motions comprising the SV and P waves are governed by

$$
\begin{align*}
& \mu^{\mathrm{c}} \frac{\mathrm{~d}^{2} \tilde{\bar{u}}_{1}}{\mathrm{~d} z^{2}}-\left(\lambda^{\mathrm{c}}+2 \mu^{\mathrm{c}}\right) k_{\alpha}^{2} \tilde{\bar{u}}_{1}-\left(\lambda^{\mathrm{c}}+\mu^{\mathrm{c}}\right) \xi \frac{\mathrm{d} \frac{\tilde{\bar{u}}_{2}}{\mathrm{~d} z}=-\tilde{\bar{f}}_{1}}{} \tag{12.45}\\
& \left(\lambda^{\mathrm{c}}+\mu^{\mathrm{c}}\right) \xi \frac{\mathrm{d} \tilde{\bar{u}}_{1}}{\mathrm{~d} z}+\left(\lambda^{\mathrm{c}}+2 \mu^{\mathrm{c}}\right) \frac{\mathrm{d}^{2} \tilde{\bar{u}}_{2}}{\mathrm{~d} z^{2}}-\mu^{\mathrm{c}} k_{\beta}^{2} \tilde{\bar{u}}_{2}=-\tilde{\bar{f}}_{2} \tag{12.46}
\end{align*}
$$

The out-of-plane motion comprising the SH wave is governed by

$$
\begin{equation*}
\mu^{\mathrm{c}} \frac{\mathrm{~d}^{2} \tilde{\bar{u}}_{3}}{\mathrm{~d} z^{2}}-\mu^{\mathrm{c}} k_{\beta}^{2} \tilde{\bar{u}}_{3}=-\tilde{\bar{f}}_{3} \tag{12.47}
\end{equation*}
$$

We define $V_{\mathrm{P}}=\sqrt{ }\left[\left(\lambda^{\mathrm{c}}+2 \mu^{\mathrm{c}}\right) / \rho\right]$ and $V_{\mathrm{S}}=\sqrt{ }\left(\mu^{\mathrm{c}} / \rho\right)$ to denote the P-wave and the Swave velocity, respectively. The notations

$$
\begin{equation*}
k_{\alpha}=\sqrt{\xi^{2}-\left(\omega / V_{\mathrm{P}}\right)^{2}}, \quad k_{\beta}=\sqrt{\xi^{2}-\left(\omega / V_{\mathrm{S}}\right)^{2}} \tag{12.48}
\end{equation*}
$$

with $\xi^{2}=\xi_{x}^{2}+\xi_{y}^{2}$ have been introduced for defining the wavenumbers for the P wave and the S-wave field, respectively.

The displacements obtained from the solution of equations (12.45) and (12.46) can be expressed as

